
6. MODEL EVALUATION 

This chapter evaluates the model by analyzing and discussing potential sources 
of error, paying particular attention to the spatial data issues discussed in section 2.4.3; 
positional accuracy, resolution, and content. Studying the sources of model spatial 
error provides insight into developing validation studies and future research needs. 
One of the model objectives identified in chapter 3 was for the model to be statistically 
sound. Exploring the sources of error, and their propagation in the model, will also 
help determine appropriate strategies for developing confidence bounds around the 
spatially resolved estimates, an important model design feature. A sensitivity analysis 
and a comparison between the aggregate modal approach and speed-correction-factor 
approach are also provided. 

A large amount of error in the model will be associated with the quality of the 
input data. While input data error is not explicitly discussed, it should be evident that 
any limitations associated with the input data impact the model results. It should also 
be noted that the input data’s measures of spatial quality should focus on the relative 
positional accuracies among the datasets, not just the absolute accuracy. 

6.1. Spatial Environment 

The spatial environment modules create the spatial entities sz, mr, and mz. 
Each entity was created by spatially manipulating input polygon and line data. During 
the spatial manipulation, potential positional errors arise that would impact the 
locational accuracy of the estimates. The following two sections describe the potential 
issues. 

6.1.1. SZ 

SZ was created using polygon-on-polygon overlay techniques on the four 
ARC/INFO coverages census, taz, ZIPcode and landuse (see figure 4.2). The 
technique merges two or more polygon networks into a single polygon network. The 
datasets share many common boundaries. However, the data were developed from 
different sources and resolutions resulting in different representations of common 
boundaries. In the sample area, the US Census blocks and the ARC’s TAZs were 
generated from the original TIGER data, and, therefore, match very well. The ARC’s 
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land use and ZIP code data were developed from different sources. The impact of this 
problem is that there is potential for misrepresentation of the landuse / TAZ / census 
combinations. 

Figure 6.1 demonstrates the polygon-on-polygon overlay problem. The figure 
shows a portion of the sample area’s polygon structure. The left side shows census 
polygons in black lines and landuse polygons in gray lines. The right side shows census 
and landuse polygons in gray, and the resulting SZ polygons in black. Point A shows 
a shared boundary between landuse and census that is represented differently. Point B 
shows polygon boundaries that may, or may not, represent the same features; it is too 
difficult to tell conclusively. 

The polygon overlay process includes a ‘fuzzy tolerance’ that allows the user to 
define a threshold that is allowable for matching edges. In the study model example, a 
tolerance of 30 meters was allowed. The resulting polygon structure (SZ) is shown on 
the right side of the figure. Point C shows the same area as point A, but the potential 
‘sliver’ polygon was removed because the lines were within the tolerance level. Point 
D shows borders that may have represented the same feature, but as the distance 
between the two edges deviated more than 30 meters, they were represented as 
separate entities. 

A B 
C D 

Census and Landuse Census, Landuse, and SZ 

Figure 6.1 - Polygon Overlay Errors 

As a result of the polygon overlay process, there are potential errors that exist 
in the spatial representation of the joined polygons. There are three potential impacts 
on the resulting data; data are lost, data are spatially misrepresented, and data 
combinations are incorrect. The biggest risk to emission output quality is the loss of 
data. By adjusting the boundaries of the spatial entities, any polygons less than 30 
meters across would be removed. In the sample study area used in Chapter 5, 5 of 925 
US Census blocks were lost during this process. Most of the blocks were road 
medians between divided highways and held no bearing on the emission estimates. 
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However, one was a Census block that contained two households. In this case, two 
households have little impact, but other datasets may have more, suggesting that the 
model user would have to select a smaller tolerance level. The trade off to lower 
tolerance levels is increased spatial misrepresentation. 

Spatial misrepresentation and incorrect data combinations are difficult to 
identify because the true values and positions must be known. Prior to model 
operation, detailed quality control steps in data development will prevent further error 
propagation. The model assumes that errors in input data exist, and therefore, a ‘fuzzy 
tolerance’ is used that can be adjusted to minimize data loss and maximize accurate 
representation. 

6.1.2. MR and MZ 

MR is created by selecting roads that are modeled in the travel demand 
forecasting model. Spatial errors associated with MR occur in the preprocessing steps, 
not in the formal model. The process of conflation, described in section 5.1.2, involves 
a great deal of user input, adding an aspect of human error. 

The biggest concerns resulting from conflation errors are missing roads and 
miscoded roads. Matching some travel model links with the actual roads they represent 
can be difficult because the travel demand model network consists of abstract 
representations of roads. This is compounded by a lack of agreement or reporting 
about road classification in multiple datasets. Further, commercially available, accurate 
road datasets (similar to NAVTECH used in the study area) use significantly more 
detail than the travel models. One travel model link usually represents many road 
segments. During the conflation process, it is easy to miss one of the small segments, 
resulting in a ‘gap’ in the new network. 

MZ polygons are created by defining the MR lines as polygon boundaries. 
There are no problems with the spatial accuracy of the polygons, other than those 
mentioned for the MR road network. However, there is one issue that is worth 
mentioning. The polygons are supposed to represent aggregations of local roads. The 
process of creating the MZ polygons does not actually consider the locations of these 
roads, but are defined as any polygon bounded by major roads (or the outside 
boundary). Therefore, medians from divided highways become defined as MZ 
polygons. While this poses no impact on the emission estimates, it can impact the 
amount of time required for model operation. 

125
 



6.2. Vehicle Characteristics 

The spatial errors associated with vehicle characteristics are significant and 
worth detailed study. There are several broad assumptions made in developing the 
spatially-resolved fleet distribution estimates. First, it is assumed that a vehicle’s 
registered address is its ‘home’ location. This has not been proven or studied in 
previous research. Second, it is assumed that all the registered vehicles have the same 
probability of being operated at any given time. This not the case, but little evidence 
exists that justifies adjusting the fleet distribution to more accurately characterize 
operating vehicles. Third, it is assumed that any road segment’s operating fleet 
distribution is composed of two groups of vehicles, a ‘local’ fleet and a ‘regional’ fleet. 
While some evidence exists to back up the idea [Tomeh, 1996], many questions remain 
about the specific definitions of the two groups of vehicles. 

The potential negative impact of the above assumptions is reduced by predicting 
aggregate distributions rather than individual vehicles. The actual number of vehicles 
predicted at each entity, or whether the right vehicle is predicted at each entity, is less 
important than the predicted distribution. The only vehicle information used by the 
model is the fraction of each technology group at the zonal or road segment level, not 
the frequency. The model is more concerned with accurately characterizing the fleet, 
than accurately identifying the fleet. 

Measures of the model’s ability to predict the fleet distribution must come from 
future validation efforts. However, data do exist that indicate some biases found in the 
decoding process. Figures 6.2 and 6.3 show the degradation of the quality of the fleet 
estimate as vehicle characteristics are determined in the model. The basis for 
comparison (model year) comes from the raw vehicle registration dataset. As vehicle 
identification numbers (VINs) are decoded, model year information is predicted. 
Comparing the predicted and original model year distributions for the various datasets 
shows where bias has been introduced into the system. 

Figure 6.2 shows the drop in the frequency of each model year for three steps in 
the decoding process; the VIN decoder, the removal of non-autos, and the assignment 
of vehicle weight. The VIN decoder operation results in a 7.7 % loss of data because 
the VIN couldn’t be decoded. Most of those vehicles are older than 1980, when VINs 
were not standardized among manufacturers. Two odd ‘humps’ occur (frequency is 
overpredicted) in model years 1973 and 1978. After removing non-autos, only the 
1973 hump remains. Further study revealed that the VIN decoder software was 
incorrectly assigning pre-1972 BMWs and Volvos as 1973 vehicles. 

Adding the test weight to the vehicles (removing those without matches) 
resulted in a substantial data loss (39%). It also appears that the data loss is biased by 
model year, with 1988 vehicles underrepresented and 1995 and newer vehicle 

126
 



unrepresented. Figure 6.3 shows the resulting distributions. The final distribution 
shows the impact of the data loss on the fleet distribution. Pre-1972, post-1994, and 
1988 vehicles are under-represented. Mid-1980s and early-1990s vehicles are over-
represented. 

6.2.1.  Zonal Fleet 

There are two concerns regarding the spatial allocation of the vehicles to zones; 
incorrect assignment, and non-residential trip distributions. Vehicles can be incorrectly 
assigned to zones because of address-matching problems. Non-residential trips use the 
fleet distribution of the current zone, disregarding the fact that the actual fleet 
distribution consists of vehicles originating from other locations. 

The address-matching process can result in a small percentage of vehicles that 
were incorrectly assigned to zones because of errors in the address, an issue that has 
been well-documented in the literature. This problem is minimized in the model by 
having stringent matching guidelines; the vehicles’ ZIP codes must match the candidate 
addresses’ ZIP codes, the road types must match perfectly, and there can only be one 
error in spelling or incorrect address prefix (north, east, etc.). Further, the road dataset 
being used for address-matching could be missing new subdivisions or developments. 
If the registration dataset is newer than the last road dataset update, there could be 
vehicles that fail to match. However, the ‘failed’ vehicles are not discarded, but 
assigned a location based on their ZIP code. 

The zonal fleet is developed from two sets of files, an address-matched file, and 
a ZIP code file (address match failures). To bring these two groups of vehicles 
together, the relationship between the SZ polygons and ZIPcode polygons must be 
identified. Each SZ is apportioned part of the ZIP code vehicles based on a comparison 
of the areas of the two polygons. A zone could have 78 vehicle address-matched 
within its boundaries, and an additional 10.3 vehicles assigned to it from the ZIP code. 
Since the concern of the model is the distribution, there are no problems that arise from 
non-integer frequencies. 

Zones that do not have any address-matched vehicles are assigned the fleet 
distribution of the ZIP code. While some problems remain, zones that have new 
subdivisions will be assigned a fleet distribution that partially represents the vehicles 
registered at that location. 

The issue regarding the fleet distribution of non-residential trips is not handled 
well in the model. Since vehicles are not tracked during estimates of activity, there is 
no mechanism for tying the origin fleet distribution to the destination. Unless the 
destination lies in a zone or ZIP code with a fleet distribution that is similar that of the 
origins, an incorrect distribution will be assigned. Given the dynamics of land use 
development, there is strong indication that strong bias will exist. For example, the 
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fleet distribution of vehicles leaving a commercial land use zone is assigned the  
profile of registered vehicles in that zone and ZIP code, not the trip origin zones of the
operating vehicles.
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6.2.2. On-road Fleet 

Problems associated with the on-road fleet distribution estimation stem from the 
unvalidated assumption that the on-road fleet can be summarized by combining a local 
fleet (defined as all vehicles within 3 km) and a regional fleet (all vehicles in the region). 
The instability of this approach is demonstrated by analyzing two sets of observed on-
road vehicle datasets. Figure 6.4 shows registered vehicle locations for vehicles that 
passed through data collection sites in the study area. These data were collected and 
provided by the School of Earth and Atmospheric Sciences at Georgia Tech. License 
tags were captured on passing vehicles and matched to a registered vehicle’s VIN and 
address. At site A, 674 vehicles passed through the data collection site. The figure 
indicates that spatial variation exists in the estimated origins of the observed vehicles. 
However, the size and shape of the spatial variability are unclear. Similarly, site B, 
with 13,481 vehicles, indicates spatial variability. The model currently uses a 3 km 
radius to define a ‘local’ fleet (10% of the observed vehicles fell in that range). It may 
be more accurate to select an alternative geometric (wedge, oval, network distance, 
etc.) search pattern involving road types, time of day, and network structure. 

Site A: Arterial, 641 Vehicles Site B : Ramp, 13481 Vehicles 

Figure 6.4 - Observed On-Road Vehicle Origins 

6.3. Vehicle Activity 

Spatial errors associated with the estimates of vehicle activity can be tied to 
previously mentioned problems with the spatial environment and the travel demand 
model limitations. The model shares the problems associated with the use of the travel 
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demand forecasting models in predicting emission-specific vehicle activity; inaccurate 
speeds, no feedback into the distribution phase, etc. (see section 2.3.1). These known 
travel demand model result limitations will not be discussed. However, trip 
disaggregation, the use of regional temporal distributions, and speed and acceleration 
matrices create some errors in vehicle activity estimates that are worth mentioning. 

The disaggregation of trips by purpose to different landuse makes the broad 
assumption that the landuse data are discrete. All home-based trips are assigned origin 
engine starts to residential area. If homes can be found in other land uses, their engine 
start activity estimates will not be assigned to the correct location. The landuse data 
must be discrete to prevent this from occurring. 

The use of regional temporal factors to distribute zonal and road segment 
activity results in errors. A series of spatial queries using 1990 Census data in Atlanta 
indicated that the fraction of people traveling to work between 6:30 and 7:00 AM was 
approximately 9% for people living within 2 kilometers of the central business district 
(CBD), and about 15% for people living between 8 and 10 kilometers from the CBD. 
By using regional temporal factors in the model, all zones and road segments are 
assigned the average, not allowing spatial variability. Thus, the peak hour 30 miles 
from the CBD will be the same as the peak hour 5 miles from the CBD. 

The speed and acceleration profiles were used as a post-processor to the travel 
demand model’s output. They are used to predict the modal distributions of the 
vehicles operating on the road. The model only includes matrices for interstates and 
ramps, forcing all lower classifications to rely on a single profile of mid-block 
estimates. As soon as new data are collected, validated, and available, the model 
structure can incorporate the new findings. The impacts of modal activity around 
signalized intersections could have a tremendous impact on the spatial variability of the 
estimates. As is, running exhaust emission estimates are highly correlated to volume. 
The potential variability found in future matrices could show that the highest emissions 
occur around major intersections, not high volume, low modal variability interstates. 
Further, the characterizing of dynamic modal activity into discrete bins and levels of 
speeds and accelerations could result in a certain level of error. Current research 
efforts are attempting to validate the approach. 

6.4. Facility and Gridded Emissions 

The spatial errors associated with the emission estimates come from 
aggregation. No spatial manipulation procedures are used to generate the facility-level 
emissions estimates. The facility-level estimates are, however, impacted by non-spatial 
errors. The gridded emission estimates are generated by aggregating facility-estimates 
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to vector grid cells of a user-defined size. During this process, spatial errors are 
incurred. 

6.4.1. Facility Emission Estimates 

New errors introduced to the facility-level emission estimates are generated by 
the process for determining emission rates. The emission modes (engine start, running 
exhaust) have gram per start or gram per second rates predicted by the hierarchical 
tree-based regression. The resulting emission rate values are discrete, with known 
confidence bounds. The accuracy of the emission rates is affected by the size and 
representativeness of the emission test dataset. The emission rates used in the model 
were developed from a dataset of approximately 3000 vehicle tests using about 700 
individual vehicles. Currently, improvements and additions are expanding the dataset 
to over 10,000 tests. 

6.4.2. Gridded Emissions 

The errors associated with the aggregation of facility emissions to user-defined 
grid cells are spatial in nature. Vector grid cell polygons are overlaid with the SZ, MR, 
and MZ entities using the techniques described in sections 6.1.1 and 6.1.2. The ‘fuzzy 
tolerance’ used in this process is set as low as processing time will allow. There won’t 
be any shared boundaries in this overlay technique and high ‘fuzzy tolerance’ will only 
degrade the spatial quality. Once the polygons and lines are split by the grid cells, the 
emission estimates are weighted (the proportion of the new entities’ area or length and 
the original spatial entities’ area or length) and summed by grid cell. 

The size of grid cell selected by the user impacts the cell’s accuracy. Larger 
cells will have more accurate estimates because errors (unbiased error) at the facility 
levels can be offset by aggregation. Small grid cells will have fewer entities falling 
within its borders, reducing the number of values to draw from. Further, grid cell sizes 
falling below the spatial accuracy of the origin datasets could spatially misrepresent the 
locations of emission estimates. Larger cells have the advantage of absorbing errors 
related to absolute position. Figure 6.5 shows grid cell aggregations from the sample 
study area described in chapter 5. Four levels are shown: 100 meter, 250 meter, 500 
meter, and 1000 meter. The figure is useful in looking at the total emissions from 
different levels of aggregation. While the 1000 meter (1 km) grid cell is expected to be 
used for future photochemical models, additional information for research can be 
gleaned from smaller cell sizes. 

131
 



100 Meter 250 Meter 

500 Meter 1000 Meter 

Figure 6.5 - Sample Grid Cell Aggregations 

6.4.3. Sensitivity of Model 

The model sensitivity can be measured in two ways: estimate accuracy and 
locational accuracy. The sensitivity of the estimate accuracy can be shown by running 
the model with a full range of input variables. The sensitivity of the locational accuracy 
depends on the spatial allocation of the estimate, given a full range of influential 
factors. 

Figures 6.6 through 6.11 show how the emission rate varies for each 
technology group, level of service (LOS), and road grade. The graphs are for interstate 
activity only because speed and acceleration data for lower classifications do not yet 
exist. The percentage of the sample area’s regional fleet in each technology group is 
provided in the graph as well. The very low percentage of some technology groups is 
the result of the problems mentioned earlier (section 6.2) regarding the determination 
of vehicle technologies. 

All the technology groups have substantial estimated increases in emission rates 
for LOS F. The speed and acceleration profiles for interstate LOS F show substantially 
more variability in speeds and accelerations. Other LOS impacts are fairly static, 
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slightly increasing as traffic flow degrades from LOS A to LOS D. However, during 
LOS F activity (volume to capacities greater than 1.0 and average speeds less than 30 
MPH), the model is predicting that emissions rates increase substantially. 

The impact of road grade is seen for CO normal emitters, HC high emitters, and 
NOx high emitters. The graphs indicate that these technology groups have higher 
emission rates for steeper grades. As mentioned previously, the impacts of grade may 
be substantially under-predicted. Currently, the model adjusts the acceleration rates of 
vehicles based on the road grade. There are no mechanisms in the model that adjust 
emission rates based on engine load. It is expected that emission rates will vary 
significantly once these impacts are considered. 

Unlike the emission estimates, the locational sensitivity of the model is not the 
result of a series of calculations. Estimates are allocated to zones or lines based on 
input data conditions. For example, the return trip of a home-based-shopping (HBSH) 
trip begins in a shopping area (commercial land use) and ends at home (residential land 
use). If the TAZ with a HBSH attraction has commercial land use within its 
boundaries, the emissions from the engine start are allocated evenly to all commercial 
areas. If no commercial land use is indicated by the data, the engine start emissions are 
all allocated evenly to the entire TAZ. All the sample area TAZs had residential and 
non-residential land uses, and all but two had commercial land uses. 
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Figure 6.6 - CO normal emitter technology group emission rates by LOS and 
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Figure 6.7 - CO high emitter technology group emission rates by LOS and grade 
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Figure 6.9 - HC high emitter technology group emission rates by LOS and grade 
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Figure 6.11 - NOx high emitter technology group emission rates by LOS and 
grade 
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6.4.4. MEASURE vs. MOBILE5a 

To compare the USEPA’s MOBILE5a and the new HTBR emission rates used 
in MEASURE, emission rates were determined for each speed and acceleration bin (0-
80 mph, -10.0 to 10.0 mph/sec). Figures 6.12 to 6.17 show these profiles. Both 
emission rate models were used for each pollutant. The sample area results are also 
provided, showing a comparison between the hourly total grams of each pollutant. 
While much remains to be validated with MEASURE, this comparison provides some 
evidence for the future development of modal emission rate models. 

Both data sets used in the analysis included the regional fleet distribution for the 
study area. The MOBILE5a rates were the running exhaust zero mile base emission 
rates (deterioration and start fractions effects removed). The HTBR rates used in 
MEASURE were similar; no start emissions or deterioration effects were included. 

All the graphs show significant differences. The biggest impacts is the fact the 
MOBILE5a does not vary emissions by acceleration. A vehicle traveling at an average 
speed of 50 mph with minor variations in acceleration and deceleration is predicted to 
have the same emission rate as one with large variations. MEASURE indicates that 
these variations may have significant impacts on emission rates at certain thresholds of 
speed and acceleration activity. 
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Figure 6.14 - MEASURE g/sec HC emission rates by velocity and acceleration for
the study area’s vehicle fleet
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Figure 6.15 - MOBILE5a g/sec HC emission rates by velocity and acceleration for
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6.4.5. Conclusion 

There are a variety of errors generated by model procedures. Future validation 
efforts will quantify the errors so that confidence bands can be predicted for the 
estimate value and position. During the process, particular attention should be paid to 
the estimates of the spatial variability of the operating fleet. Clearly, this model 
component has the greatest potential for spatial error. The use of regional temporal 
factors create significant non-spatial errors, particularly in off-peak hours. As long as 
accurate information is fed to the model, errors resulting from modeling procedures are 
significantly reduced (polygon overlay error, trip disaggregation error, etc.). Minimum 
grid cell sizes should be assessed for each model scenario. 

The new modal emission rates indicate that vehicle technologies and vehicle 
operating profiles (speed and acceleration) have significant impacts on emission rates. 
While the new emission rate models need to be validated, there is strong evidence that 
MOBILE5a is insensitive to important emission-specific vehicle activity. 
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